
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Computer Science

Bachelor’s Thesis

Data warehouse extension DAFOS

Jevhen Olehovyč Ponomarenko
Software Engineering and Technology

Prague, June 2020
Supervisor: Ing. Jiří Šebek

Acknowledgement / Declaration

I want to thank my supervisor Ji�í
äebek and colleagues Robert Shönfeld
and Radovan Lupták, for valuable ad-
vice while writing this thesis. Unique
appreciation goes to my family and girl-
friend for patience and support during
my studies.

I hereby declare that the presented
thesis is my own work and that I have
cited all sources of information in accor-
dance with the Guideline for adhering
to ethical principles when elaborating
an academic final thesis. I acknowledge
that my thesis is subject to the rights
and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright
Act, as amended, in particular that the
Czech Technical University in Prague
has the right to conclude a license agree-
ment on the utilization of this thesis
as school work under the provisions of
Article 60(1) of the Act.

In Prague on June 22, 2020

. .

v

Abstrakt / Abstract

Tato baká�ská práce se zab˝vá au-
tomatizaci ETL proces� v datovém
skladu Technologické agentury �eské
republiky - DAFOS. Po nastavení po-
ûadavk� na nov˝ ETL framework,
analyzuje moûná pr�myslov� vyuûívaní
�eöení pro orchestraci ETL proces� a
implementuje strategie pro �eöení pro-
blému, které vznikly ztrátou kontroly
nad b�hem ETL procesu jako jsou
nap�íklad: dohled nad zm�nami dat
nebo místo pro ukládání do�asn˝ch dat
z moûnosti dotazování nad nimi. Na
základ� definovan˝ch postup� integruje
nov˝ datov˝ zdroj do datového skladu:
kolekci patent� z OPS. Nov technolo-
gická �eöení byla za�azená do datového
skladu: MongoDB jako místo pro uklá-
dání do�asn˝ch dat a Apache Airflow
pro orchestraci ETL proces�.

Klíčová slova: Apache Airflow;
Django; DAFOS; Starfos; datové sklady;
ETL; bakalá�ská práce; TA �R; Mon-
goDB; European Patent O�ce;

Překlad titulu: Rozöí�ení datového
skladu DAFOS

This bachelor thesis deals with the
automation of ETL in the DAFOS data
warehouse. After laying out the require-
ments for the new ETL framework, it
analyzes possible approaches for or-
chestration of the ETL processes and
implements strategies for sub-problems
that arose from the full automation.
The new patent data set was added
into the warehouse using the defined
approaches. The solution provides
answers to many sub-problems that
resulted from shifting control of the
ETL from a developer: governance of
the newly modified data or data stag-
ing area with query capabilities. New
technologies were introduced into the
technological stack of the warehouse:
MongoDB as a staging area solution and
Apache Airflow for allowing a unified
approach to defining and scheduling the
ETL processes.

Keywords: Apache Airflow; Django;
DAFOS; Starfos; data warehouse; ETL;
bachelor thesis; data governance; Mon-
goDB; European Patent O�ce; TA CR;

vi

Contents /

1 Introduction .1
1.1 Structure of the document1

2 Data warehousing2
2.1 ETL processes.2

3 Technology Agency of the
Czech Republic .3

3.1 DAFOS data warehouse3
3.2 Domain .3
3.3 Architecture .5

4 Software requirements speci-
fication .6

4.1 Surrounding the requirements . . .6
4.1.1 Business needs6
4.1.2 Data integration re-

quirements6
4.1.3 Software requirements7

5 An analysis of available work-
flow orchestration solutions8

5.1 Scope and purpose8
5.1.1 Luigi .8

5.2 Apache Airflow.9
5.3 Dagster .9
5.4 Final Conclusion 10

6 The automation of the current
ETL processes . 12

6.1 Analysis . 12
6.1.1 As-is state 12
6.1.2 To-be state 14

6.2 Implementation 16
6.2.1 Data staging area 17
6.2.2 Data governance 18
6.2.3 Common loading inter-

face . 19
6.2.4 Automation 20
6.2.5 Summary 23

6.3 Testing . 23
6.3.1 Integration tests 23
6.3.2 Test suite 25

7 Integrating the PATSTAT data
source . 26

7.1 Analysis . 26
7.1.1 Business requirements . . . 26
7.1.2 Data sources 27

7.2 Implementation 28
7.2.1 Domain model 28
7.2.2 Data pipeline. 29

7.2.3 Extract 30
7.2.4 Transform 32
7.2.5 Load . 33
7.2.6 Automation 33

7.3 Testing . 36
7.3.1 Unit tests. 36
7.3.3 Test suite 37

8 Conclusion . 39
8.1 Further refinements 39

9 List of abbreviations used in
the document . 41
References . 42

A Contents of enclosed CD 45

vii

Tables / Figures

5.1. A comparison of features
available by each tool 10

6.1. The test suite for newly im-
plemented functionality 25

7.1. Data formats and price com-
parison . 27

7.2. Test suite related to PAT-
STAT integration. 37

3.1. A view of the Starfos search
engine .3

3.2. The domain model of critical
entities in the warehouse.4

3.3. The high-level view of the
architecture .5

6.1. The structure of components
responsible for data retrieval
and manipulation 13

6.2. he flow of data throughout
the warehouse 14

6.3. A view of an analysis of Mon-
goDB collection 15

6.4. Changes in the architecture
of the system, added systems
are depicted in blue 16

6.5. A model of the mongo record
with metadata fields 17

6.6. The process of saving a
record to the staging area 18

6.7. The record change relation
diagram . 19

6.9. The ImportedModel interface . 20
6.10. The SolrSyncStatus class di-

agra . 23
6.11. A view of dependencies and

state of individual tasks in
resulting DAG 23

7.1. Patent data set domain model . 28
7.2. Patents data pipeline 29
7.3. The class diagram of the ex-

traction interface 32
7.4. A class diagram of extraction

interface . 33
7.5. An admin interface of con-

nections in Airflow 34

vi

Chapter 1
Introduction

ETL processes are one of the most vital parts of the data warehouse. As the data
warehouse grows in data, manual scheduling of these tasks becomes insu�cient: de-
pendencies of these tasks have to be well documented, and the whole process requires
attention from a developer. A couple of solutions answering the questions on how
to design and schedule ETLs e�ectively in Python were developed in recent years and
serve as an industry-standard nowadays. ETL orchestration is not the only requirement
needed for better maintainability and extensibility of the DAFOS data warehouse. Sub-
problems covered in the thesis also include data staging area and solutions for better
control of incoming data.

1.1 Structure of the document
This document is composed of four main chapters. In Chapter 2 I define key concepts
later discussed in the document. I analyze available solutions for orchestration of ETLs
in Chapter 5 and then automate current scripts handling integration of IS VaVaI data
set in Chapter 6 and integrate a new data set of patents in Chapter 7.

1

Chapter 2
Data warehousing

In the late 1970s, most organizations used relational database systems for storing vital
information and supporting day-to-day operations [1]. These systems proved to be
insu�cient as increasing market requirements led to the need for accessing the right
information at the right time. As a result, a new set of tools was formed to better
support new requirements for improving the operations of businesses. In the 1990s,
data warehousing and online analytical processing (OLAP) were developed to help the
decision-making process. This involves a set of tools, algorithms, and architectures
to allow the accumulation of information from various data sources over a period of
time to enable the analysis of its evolution and discovery of strategic information. The
universally accepted definition of a data warehouse was developed by Bill Inmon in the
1980s and is “a subject-oriented, integrated, time-variant and non-volatile collection of
data used in strategic decision making.”. [2]

. subject-oriented - data is divided into units (e.g tables) by the type, not by the source
of data,. integrated - warehouse integrates data coming from various sources and in di�erent
formats,. non-volatile - data warehouses are designed to be “read-only”, so after data is saved
it should not be manually edited [3].

2.1 ETL processes
ETL processes are essentially the most important component of DWH [2]. ETL stands
for Extract, Transform, Load as these are the stages of data during the process. A
properly designed ETL system extracts data from various sources, transforms the data
using quality and consistency standards, so that separate sources can be combined. It
then saves them in the destination system in a format that can be later easily used by
other applications.[4]

The design and implementation of these processes can be a very demanding task,
and even though it is a functionality hidden from the users, it easily consumes 70
percent of the resources needed for implementation and maintenance of a typical data
warehouse.[4] These components play a key role in defining a ETL framework[5]:

. Triggers - event listeners, perform logic when some criteria is met,. Database tables - destination formations used to store the information,. Software libraries - libraries produced by third parties that can be used for more
straightforward data transformation,. Scripts - abstractions that perform business logic,. Notifications - real-time analytics over the system,. Schedulers - modules that orchestrate the whole framework.

2

Chapter 3
Technology Agency of the Czech Republic

The Technology Agency of the Czech Republic, an organizational unit of the state,
is a state institution that oversees the process of public contests in which funding is
allocated to applied research projects. Main objectives of TA CR include:

. analysis and realization of applied research programs,. evaluation of completed R&D projects,. provision of funds R&D projects,. communication between business sector and research groups.

3.1 DAFOS data warehouse
DAFOS is one the key results of the Proeval[6] project. DAFOS data warehouse serves
as a source of data used for purposes of Starfos full-text search engine, depicted in
Figure 3.1 (for projects and results in the field of research, experimental development,
and innovations that have been supported by public funds of the Czech Republic).
DAFOS is not a platform for collecting data related to the research and application
process from users, DAFOS only aggregates the data from various sources to later
present them in a more readable way for the public.

Figure 3.1. A view of the Starfos search engine

3.2 Domain
The domain of data stored in DAFOS is projects and results in the field of research,
experimental development and innovations that have been supported by public funds
of the Czech Republic.

3

3. Technology Agency of the Czech Republic .
The domain model of key entities is presented in Figure 3.2.

Figure 3.2. The domain model of critical entities in the warehouse

Project

The table contains information about projects, a particular R&D activity with a defined
goal; there are over 50 thousand records currently present in the warehouse.

Results

The table contains metadata about scientific publications, patents, trademarks, and
other forms of applied research results; there are currently over 1 million records present
in the database.

4

. 3.3 Architecture

Organization

The table contains information on real-world entities of various legal statuses i.e., busi-
ness entities or universities. There are over 7 thousand records present.

3.3 Architecture
DAFOS warehouse has a centralized architecture [7] with the addition of the search
engine part. The architecture of the warehouse was influenced by the need to support
predefined queries over the data. The relational database is not the only destination
of the data; data gets serialized and indexed by a Solr engine before it is presented
to the end-user. This kind of architecture proved to be one the easiest architectures
to implement and perfectly solves its purpose. No single architecture is dominant in
terms of information and system quality [7] and DAFOS is not an exception; the
decision to use centralized architecture came solely from the requirements: start small
and deliver short-term benefits while having a long term plan. The high-level view of
the architecture is presented in Figure 3.3.

Figure 3.3. The high-level view of the architecture

5

Chapter 4
Software requirements specification

This chapter outlines software requirements for the new ETL framework that will serve
as a platform for integrating new data sources into the DAFOS data warehouse. The
main aim of this document is to define new requirements based on experience with the
current system.

4.1 Surrounding the requirements
Requirements for the new ETL framework are divided into three categories: business
needs, data integration, and software requirements. The software requirements logically
arise from the requirements of this thesis, which are:

1. decoupling importing scripts,
2. staging area with query capabilities,
3. refactoring data model,
4. centralized log storage with query capabilities,
5. idempotency of individual importing steps,
6. data versioning,
7. tracking manual changes of data,
8. reports about newly changed data.

4.1.1 Business needs
The biggest shortcoming of the DAFOS warehouse is how frequently data gets updated.
As mentioned earlier, the process of importing data needs to be completely redone on
every major update of data, and requires a lot of manual steps. Therefore, data gets
updated approximately once every three months. A new ETL system will need to
address this issue. The fully automated process comes with high risks; the developer
team is no longer in charge of the process. Thus, there is a need to report changes in
data that take place. One other point is that the final costs of the solution should be
taken into account.

A Summary of the business requirements:. Automation - ETL processes need to be fully automated and scheduled with little to
no e�ort from the developer side,. Data lineage - the need for tracking changes of data,. Cost - cost to maintain, develop and run the solution should be minimal.

These requirements are closely related to requirement number 1, 8, 6.

4.1.2 Data integration requirements
There are many data sources with a variety of output formats producing data that is
later stored in multiple places. The new ETL system needs to integrate these sources
and provide a common interface to interact with them. As the number of source systems

6

. 4.1 Surrounding the requirements

grows, need for unified storage of credentials for access becomes apparent. In order to
have a better overview of incoming data, the data staging area needs to provide an
easy-to-use interface for querying the data and sharing analytical information about
them.

A summary of the data integration requirements:

. Common interface for loading data - interface for importing data into a data ware-
house should be as general as possible to make integrating a new source easier,. A set of tools for data extraction - set of utility functions/modules for standardized
interaction with data staging area,. Data staging area - data should be accessible in the source format by the analytical
and developer team before it is loaded into the destination database. Querying of
the data needs to be supported.

These requirements are closely related to requirement number 2, 5.

4.1.3 Software requirements
For a smoother transition, legacy processes that handled importing logic need to be
fully supported into the new system, and their integration should be straight-forward.
The new ETL system needs to address the issue of the speed of ETL processes. Par-
allelization of some steps in ETL processes is required and, therefore, a new system
will act transparently when these requirements arise. Even though the chosen method
will be tightly coupled with the current stack used in the project, it will still allow
integrating new technologies into it, e.g. databases, frameworks for processing data.

Summary of the software requirements:

. Support for current modules - the absence of the need to completely rewrite the
current system will help in the adoption of it,. Parallelization - each component of the ETL process will be easily parallelized if it
is allowed to use multiprocessing. Out of the box integration of other services - services like Google Cloud Platform
can be easily integrated into the ETL process.

7

Chapter 5
An analysis of available workflow
orchestration solutions

It was decided that to allow automating of ETL scripts, a new framework or service
would need to be integrated into the warehouse. Another solution could leverage the
use of cron, but this tool proved to be insu�cient because of the lack of triggering
capabilities, i.e., run task A if task B had finished successfully.

There is a wide variety of systems used for the management of ETL workflows. Some
of them are robust Saas solutions, while others are just simple libraries. The primary
limits of Saas systems are the technologies surrounding them: they are deployed in the
cloud and sometimes require the use of specific technologies designed for the particular
cloud solution, i.e., AWS S3 or GCP . There are great automation frameworks available
for Hadoop and Spark; however, these are not suitable within our scenario, since neither
of these systems are currently utilized in DAFOS nor do they pose any benefits in the
current state of the warehouse.

5.1 Scope and purpose
There is only a handful of open-source workflow managers that allow full control over the
ETL life cycle, i.e. execution and scheduling of scripts, their dependency management
and overview over the state of the scripts. Tools chosen for the analysis are expected to
perfectly fit into the technology stack used in DAFOS. This means they are able to run
python code and easily communicate with other services such as the database server
and Solr server. The final candidate will support the biggest subset of the requirements
defined in Chapter 4.

5.1.1 Luigi
Luigi[8] is an open-source tool for managing ETL pipelines. It was developed in Spotify.
Luigi is implemented as a service: a web server that serves as a front-end for tracking the
state of pipelines. Luigi was designed to run on a single computer, but it, nevertheless,
allows the concurrent execution of tasks. Unfortunately, Luigi does not provide a native
method of handling the scheduling of jobs and, thus, an alternative method would have
to be developed.

Primitives
The data pipeline, represented as a Python class, consists of Task classes. The task
interface provides these methods:. requires() - definition of dependencies for the task,. output() - method defining outputs of the task, the method has to return persisted

entity (value written to a file system, populated database table etc.) or another Task
to declare dependency,. run() - a method that handles main logic of the step.

8

. 5.2 Apache Airflow

Details

In order to provide a comfortable interface, all outputs of each task have to be stored
on disk. The dependencies are represented as dependencies on targets, not tasks by
themselves. This allows a secure mechanism for deciding whether a task is finished. If
the target is saved on disk, the task execution was done.

5.2 Apache Airflow
Apache Airflow[9] is an open-source project developed at Airbnb in 2014 that was
merged into Apache Software Foundation in 2016. Airflow is a tool that provides the
ETL team with everything associated with the heavy plumbing. Air-flow is implemented
as a service running a server that serves as an adminis-trative and monitoring interface
to the underlying processes. It also takes care of scheduling tasks and notifying the
ETL team if any errors occurred. The package is available to download through PyPI.

Primitives

The data pipeline, DAG, consists of Operator or Sensor classes. Task interface provides
these methods:

. DAG - directed acyclic graph: data-pipeline, and its dependencies representation,. Operator - a node of the DAG, a wrapper around a callable that can be used to
define a task. This abstraction allows for a better definition of the atomic steps of
the pipeline.

Details

Airflow o�ers everything needed to successfully automate workflows that communicate
with external services, i.e. managing connections, configurable parallelization, and
much more.

The only downside of this tool is resource consumption. Airflow also introduces the
need to maintain a new database for storing metadata about individual tasks. Airflow
definitely seems to be the most massive tool discussed in this chapter.

5.3 Dagster
Dagster[10] is the youngest framework discussed. It was built with di�erent principles in
mind to provide some extra functionality compared to the other tools. Its architecture
is very similar to the ones discussed before (a back-end server used for managing and
monitoring of pipelines).

Primitives

. solid - unit of computation with inputs and outputs defined. pipeline - composition of solids

9

5. An analysis of available workflow orchestration solutions .
Details

Dagster introduces a new feature not available in other tools: the static testing of solids.
Every time the pipeline is to be executed, a set of tests is run against the schema of solid
outputs and inputs. It also allows for the customization of a scheduler and provides a
default cron scheduler.

Unfortunately, Dagster does not allow the dynamic creation of solids from code nor
the parallelization of tasks out of the box. Another service would have to be put in
place (e.g., Celery) in order to allow horizontal scaling of workers.

5.4 Final Conclusion
The tools discussed in this chapter are very similar to each other; all of them were built
with di�erent principles in mind, however. The question of finding the best candidate
is somewhat subjective, one might prefer the external configuration of tasks using XML
files over database tables, and technical at the same time.

Feature Airflow Luigi Dagster
Pipeline visualization yes yes yes
Pipeline configuration decoupled from code yes no yes
Utilities for testing partially no yes
Paralelization out of the box yes yes no
Scheduling yes yes yes
Triggering of tasks based on state of the previous tasks yes no yes
Centralized log storage yes no yes
Support for workload distribution over more computing yes no yes
Static pipeline testing no no yes

Table 5.1. A comparison of features available by each tool

Looking at table 5.1, Dagster covers nearly all elements needed for a complete ETL
solution, and Luigi comes out as the most minimalistic solution. The question definitely
boils down to choosing between Airflow and Dagster, because Luigi by itself does not
cover as many of the requirements discussed in Chapter 4 as the other tools. Before
choosing the final candidate, both tools had to be manually tested.

The testing was accomplished by writing a simple data pipeline for loading a patent
classification from and focusing on how easy it is to write and test the pipeline, paral-
lelize the pipeline, and find documentation.

Airflow came out as the winning solution because it provides an easy to use interface
for parallelization, even for individual parts of the pipeline. This is a much-needed
requirement that was not satisfied by Dagster by default. The strict definition and
validation of outputs and inputs of solids enforced by Dagster felt just too limiting
to work with. The parameters of Airflow DAGs are stored in the code, but the tool
provides a standard interface for storing all other metadata needed for pipeline (i.e.,
connections to source systems and services). This seems like a better approach as
opposed to storing configurations for individual pipelines in XML files stored on disk.
Another big di�erence between Dagster and Airflow is that Dagster does not allow the
dynamic creation of pipelines in code. This limits the way the pipeline can be composed,
and creating a number of tasks based on the responses from external systems becomes
hard to achieve.

10

. 5.4 Final Conclusion

Airflow came out as the most mature and robust solution with a great user base.
Even though it has some disadvantages in the provided utilities for testing pipelines, it
still provides the ETL team with everything needed for running pipelines.

11

Chapter 6
The automation of the current ETL processes

The current implementation of the ETL framework in DAFOS is solely based on custom
python scripts that are divided into only two stages: download (Extract) and import
(Transform-Load). These scripts are represented as Django management commands
for the purposes of using the Django context, primarily Django ORM inside the script.
The scripts serve as an interface between developer and classes that perform the actual
logic. Classes are divided based on the file format that is being consumed (XML,
JSON, CSV) and the source of the data. Downloaded data is stored on the disk as
raw files (untransformed XML files, transformed and aggregated zipped JSON files or
responses from APIs cached in a sqlite database). This approach is highly inconsistent
and requires heavy documentation.

The automation of the whole process is non-trivial mainly because source systems
do not provide good support for incremental updates. Therefore, every time the data
needs to be updated, the whole database is built from the ground up. This is done
because there is no way to decide what records have been changed. Sometimes these
drawbacks require the process to be performed on the testing server first, and after it
is fully completed, the data is dumped from the destination database into a file and
later loaded into the production database. During this phase, the production app is
unavailable, so the process usually takes place at night, when there is a minimum of
users accessing the site.

Since the process of importing R&D results is sub-optimal, this process takes around
30 hours to finish, as there are many other entities present in response (such as or-
ganizations, solver, etc.). The current ETL process requires the developer’s attention
because the current state of the script can only be examined by checking the logs. This
is because a cumbersome full update of the data happens around twice a year, and
takes a big bite of the commercial potential of the whole solution.

6.1 Analysis

6.1.1 As-is state

The key source of data is IS VaVaI[11], other sources include ARES[9] and Google
Places API. A high level view of components taking part in the data manipulation
process is presented in Figure 6.1

12

. 6.1 Analysis

Figure 6.1. The structure of components responsible for data retrieval and manipula-
tion

. IS VaVaI - information system of R&D operated by the O�ce of the Government of
the Czech Republic. ARES - registers of Economic Subjects / Entities. Google Maps Platform - geo data. static files - enumerations downloaded from various sources. data patches - changes of data performed by a human, these changes overwrite data
downloaded from source systems.

Data downloaded from these sources go through a complex data pipeline to later be
stored and indexed in Solr. Records downloaded from source systems are stored on disk
in the form of JSON and XML files; this allows us to minimize the load on the source
systems because data do not have to be queried several times. The contents of these
files are read by importing scripts, normalized, and saved into a relational database
using Django ORM. When all the data from the staging area are saved, Solr imported
scripts are run to denormailize the data and populate the Solr document store using
HTTP API. This process is outlined in Figure 6.2.

13

6. The automation of the current ETL processes .

Figure 6.2. The flow of data throughout the warehouse

6.1.2 To-be state

To ensure the least amount of write operations to the staging area and relational
database, a new extra field was appended to every record stored: data hash. This
field is a hash computed from the contents of the JSON files converted to Python dic-
tionaries, so every time we want to download a new record, we have to check the data
hash field first, if it matches the value stored in the staging area, this means that the
record was not changed and we can skip it. The old way of importing data did not only
go through business logic changes, changes in the technologies used were also present.

14

. 6.1 Analysis

For better manipulation of the data in the staging environment, the file system had to
be replaced by something more robust that would allow us to better query and analyze
the data in the staging environment. MongoDB was chosen as the best candidate for
the task. Here are the key benefits of using MongoDB instead of the file system to store
JSON files:

. Schemaless documents - schema of the stored data does not need to be known in
advance, nevertheless it is possible to define it and require all documents to adhere
to it.. Querying of the data - MongoDB allows us to filter the data in the collection. We
can easily find records that match our query in a matter of seconds using a standard
query language.. Parallelization - write and read operations can be quickly done in bulk [12]. This
allows us to speed up the process without using any programming constructs like
spinning up threads and processes.. Analysis - MongoDB Compass (GUI tool for a view of the database) has a dominant
feature of analyzing field mappings of the data illustrated in Figure 6.3. This serves
as an excellent tool for analyzing of the data types and statistics of field values.. Sharing of data - the analytical team can easily access the data through GUI tools
and share insights using standard approaches as opposed to getting access to the
actual machine, using ssh to view and download the files and later process them.

Figure 6.3. A view of an analysis of MongoDB collection

These changes represent a significant shift in the architecture of the whole solution
reflected in Figure 6.4 . The final solution was heavily influenced by the need to keep
as much of the original code base as possible.

15

6. The automation of the current ETL processes .

Figure 6.4. Changes in the architecture of the system, added systems are depicted in
blue

6.2 Implementation

Apache Airflow was chosen as the system to handle the automation of the scripts. The
way Airflow handles the automation was perfect for our use case: a class-based approach
for defining logic that needs to be automated. It was straightforward to integrate old
importing classes into Airflow because only one new Airflow Operator was created and
later applied to all of them.

16

. 6.2 Implementation

6.2.1 Data staging area

Shift to using MongoDB as a data staging area was not the only change needed to
support the requirement of incremental import of data. For the ability to decide which
records were changed during the extraction part of the process, a few extra metadata
fields were added to every record saved in the staging area.The schema of the record with
metadata fields is reflected in Figure 6.5. For a clear way of adhering to this schema,
an ODM library, like mongongine[13], could be used. Unfortunately, validation of
each record slows down the saving and updating process significantly[14]. Therefore
the presence of metadata fields and their comparing was only enforced on the level of
app logic, not on the database level.

Figure 6.5. A model of the mongo record with metadata fields

Every time a record is being saved in the MongoDB, first the hash of the JSON
transformed into a Python dictionary is computed and compared to the hash of stored
record sharing the same code. This logic implies that every record can be uniquely
identified by either combining several fields, and creating a key or by using natural key
of the record. If hashes do not match, we have a record with changed fields and want
to replace the original with the to import flag set to True. This process is depicted in
Figure 6.6. This approach allowed us to identify the changed records needed to be
imported. In order to speed up the process, a unique index on the code field is created
when a collection is created.

17

6. The automation of the current ETL processes .

Figure 6.6. The process of saving a record to the staging area

6.2.2 Data governance

The full automation of ETL processes requires the developer team to find a new way
of tracking changes in the data over time. Since the ETL process becomes something
that will run on a recurring basis, rather than a one time process, logging the changes
of data becomes an insu�cient solution for keeping record of changed data. Three ways
of handling this requirement were identified:

. Database table - every time a record is updated or created, a new row containing
information about the change is created.. Logging - information about the change is logged into a file and later aggregated
using custom logic into a CSV report.. Data lineage framework integration - services like Apache Atlas are specifically de-
signed to allow complex data governance. Every task would define inputs and outputs
and propagate information about the changes to the service using REST API.

It was decided to go through with the custom database table solution because it
allows us to:

. integrate the view over the data into the Django admin interface, shown Figure 6.8
to allow the filtering of the records,. comfortably share the insights about the changes using web interface as opposed to
sharing custom CSV reports stored on disk,

18

. 6.2 Implementation

. track changes outside of the Airflow environment using the standard approach: the
Django ORM instead of integrating a full-blown framework that would require the
developer team to learn new technology.

Record changes
For purposes of tracking changes of the records over time, a custom RecordChange
model was created, its structure is described in Figure 6.7. The main purpose of this
model is to di�erentiate between created and updated records. In order to be able to
track changes to any records, the Django content types framework [15] was utilized.
It represents and stores information about the models installed in the Django project.
This framework, along with the generic foreign keys, allowed to create records referring
to any model present in the project.

Figure 6.7. The record change relation diagram

Figure 6.8. View of RecordChange admin interface

6.2.3 Common loading interface
A fundamental abstraction was introduced to allow a unified approach to the loading
phase of ETL: ImportedModel. It is an abstract Django model, shown in Figure 6.9 that

19

6. The automation of the current ETL processes .
is that is expected to be subclassed by every model that will require a view of changes
of it over time. The only method present in the model is responsible for two crucial
tasks: performing a check on “data hash” field and ultimately saving precious time by
not performing a write operation in the database if hashes of records are equal and
the creation of RecordChange records, discussed in the previous section, if the specific
record has never been saved in the relational database or it has been modified.

Figure 6.9. The ImportedModel interface

6.2.4 Automation
Apache Airflow is equipped with everything needed for implementing the ETL process.
Therefore, great emphasis was placed on using as many Airflow features as possible
to make the project more maintainable and present the ETL process with all of its
dependencies to the developer as clearly as possible.

Airflow

To follow the requirement of integrating legacy scripts handling the process into a new
system, one key operator, with a simple interface described in Code snipped 6.10, was
developed:

class ImporterOperator(PythonOperator):

@apply_defaults
def __init__(

self,
importer_cls,
*args,
**kwargs,

):
self.importer = importer_cls(very_verbose=True,)
super().__init__(self.importer.run,)

def execute(self, context):
super().execute(context,)

Code snippet 6.10. Importer operator interface

This allows us to pass a python class to a native Python Operator and execute the
run method. Note that this approach does not entirely follow the principle that every
operator should be atomic, because we are executing, transforming and loading logic
in one step but it was necessary for easier adoption.

20

. 6.2 Implementation

Secrets
Historically, the data needed to perform the downloading process, namely tokens for

access to the RVVI API, were stored in the specific location on the disk, thus requiring
the developer to know the location and document this part of the process. Airflow
provides standard storage for secrets that can be shared across many processes using
Airflow variables. Secrets are persisted in the Airflow metadata database and stored
encrypted, so no one can see the contents without having the key for decryption.

Instead of hardcoded connections in the code, Airflow connections were used to keep
track of di�erent kinds of source systems such as REST services defined by URL, or
database connections. Airflow connections provide a general interface for storing all
metadata associated with connections, e.g. schemes, authentication credentials. This
data can be queried anywhere in the code, and most importantly, it is decoupled from
the code itself. Airflow also provides a way to limit the number of sessions using the
specified connection: Airflow pools. Pools limit the number of task instances that are
using the connection. This can be helpful when tasks are run in parallel, and source
systems define some kind of throttling.

Django
Apache Airflow is a standalone app, and the Django context, namely app and model
registry, is not provided by default. In order to be able to import modules from the
Django app itself, the manual way of initialization of the Django context had to be
developed (described in Code snippet 6.11, 6.12 and 6.13).

Challenges:. sys.path - in order to import modules from the Django app, top-level root package
needs to be present in the sys.path global variable: a list of strings that specifies the
search path for modules [16].. Django context - Django settings and app registry need to be initialized to access
Django ORM and values from the settings module.

A simple script was created to fulfill the second requirement: initializing the Django
context.

import os.environ as env
import sys
module path to settings
env["DJANGO_SETTINGS_MODULE"] = "dafos.settings"

import django

django.setup()

Code snippet 6.11. Setting up the Django context

This script is not su�cient on its own because to import it successfully, its path has
to be known by the python interpreter. It would be possible to simply use logic defined
in Code snippet 6.12 every time this module is to be imported, though a di�erent
approach, described in Code snippet 6.13 was taken to follow the DRY principle. An
environmental variable PYTHONPATH along with an installation dependent paths get
propagated to sys.path on interpreter startup [16]. This variable was used to allow
imports of modules from the Django app in standalone scripts by simply adding a
path to the top-level package to PYTHONPATH in a shell profile file (.bash profile,
.zsh profile).

21

6. The automation of the current ETL processes .
import sys
sys.path.append("/path/to/dafos-module")

Code snippet 6.12. Expanding Python path using sys module

export PYTHONPATH="${HOME}/dafos"

Code snippet 6.13. Expanding Python path using environmental variable

Solr incremental updates

In the past, the serialization of data into Solr was handled by iterating over every
record in the database and serializing it one by one. This is no longer acceptable
because this process would have to be run frequently and take a lot of time. For the
reason of performing incremental updates of the data on a regular basis, a new way of
discovering records for serialization needed to be found.

This task is not trivial because schemas of Solr documents are highly nested, and
changes to the related records and their fields need to be tracked. Two ways of handling
this requirement are possible:

. Individual selection - an individual selection of the records to be updated in the Solr
collection based on the date of the last import,. Continuous integration - the serialization of record on every save or update event, for
example using Django signals.

Manual selection using a predefined SQL query was identified as a better fit for the
task because it eliminates redundant write operations in the Solr that would arise from
the solution involving pub/sub pattern (even though it brings some inconsistency and
harder maintainability of the code associated with the need to alter the queries with
changes of the database schema). This approach requires a SQL query to be defined for
every Solr collection. There are only three collections present in Solr, and their number
is not expected to grow drastically.

To identify newly changed records, RecordChange table, discussed in Chapter 6.2.2,
has to be queried for newly changed records and later synced to Solr. Since Solr
documents are denormalized from the relational database schema and composed of
many entities that belong together, like organization and result, it is not su�cient to
only query one entity; we need to identify changes in related records as well.

A new model, shown in Figure 6.14 was created to decouple changes in records in the
relational database and status of serialization of these records in Solr. SolrSyncStatus is
a class providing an interface allowing to store information on what records have been
stored in Solr. The content type framework, combined with generic keys, discussed
before, was utilized to create relations between arbitrary models and SolrSyncStatus.
It was possible to provide fields “is synced” and “last synced” as attributes of specific
models, but it was decided to use a 1:1 relation to allow idempotency of Solr serialization
step in the ETL.

The serialization process is composed of these steps: query newly changed records
using the “RecordChange” model along with changed related entities, and sync them
to the Solr while creating SolrSyncRecords to keep track of which records have been
already indexed.

22

. 6.3 Testing

Figure 6.14. The SolrSyncStatus class diagram

6.2.5 Summary
The use of Airflow proved to be very beneficial for defining ETL. It was possible to
clearly present the developer with a rather complicated process of ISVAV data set
integration. The resulting DAG is presented in Figure 6.15.

Figure 6.15. A view of dependencies and state of individual tasks in resulting DAG

6.3 Testing
The implemented functionality was tested using the unit and integration tests. Only
a few changes were made to the parsing logic, therefore, only a few unit tests covered
these changes.

Integration tests played a crucial role in asserting error-free interactions with the new
service MongoDB.

6.3.1 Integration tests
Integration tests test whether the system as a whole operates as expected [18]. Several
types of interactions could be tested using this approach: communication between
classes, modules, or services. For this reason, the definition of an integration test in
this project is as follows:. it verifies how the system works in integration with external dependencies - database,

data staging area, or services providing data,

23

6. The automation of the current ETL processes .
. it tests a particular data pipeline and its parts,. it tests the presence of metadata needed for the DAG to function properly.

Approach

. Do not mock dependencies over which you have full control (internal services). Using
mocks to mimic services can get very tedious: rewriting substantial logic that is not
in control of a developer.. Use “production”, original database version, and always be as close to the produc-
tion environment as possible. This requirement is sometimes hard to follow if no
virtualization techniques are used e.g. Docker and Kubernetes.. Mock dependencies over which we don’t have control. No control dependency means
you can’t remove side e�ects after interaction with this dependency (external API).

It was decided not to mock or stub the internal dependencies, so a way to provide
them in tests needed to be developed. There are no CI or CD principles put in place
in the project and the project itself is not containerized.

One possible approach could include integrating a virtualization service such as Ku-
bernetes, which could be used to simulate the production environment with all services
available. This environment could be created on the test session creation and deleted on
the session finish. Even though this approach could pave the way for containerization
of the whole project for purposes of development, it was decided not to go through with
it because it would introduce a new technology to learn and is far out of the scope of
this thesis.

The final solution performs a similar technique of automated initialization of internal
services but without the use of virtualization services. The Pytest framework provides a
perfect method for initialization and destruction of dependencies for tests, i.e. fixtures.

24

. 6.3 Testing

MongoDB

The MongoDB dependency in tests was handled by spinning up a new system process
running MongoDB on a di�erent port and di�erent database directory than the real
production database. The same method as described in the previous chapter was used
to provide the fixture in tests. A fixture with session scope was created for initializing
MongoDB and another fixture with a “function” scope, inherited from it, was created
to provide a database client and drop databases between each test run to ensure that
MongoDB testing instance is initialized only once when required.

6.3.2 Test suite
The functionality related to interacting with MongoDB was tested in test mongo test
suite. This suite is centered around testing of the interface for saving documents into
the staging area: saving duplicates in one batch of saved records or asserting that
specific flags are changed when contents of document change.

The test record change test suite is composed of integration tests that examine the
functionality related to the creation of RecordChange records when a new entity is saved
or modified and performing queries on newly revised records and related records.

The test store data test suite examined the logic of saving of raw data into the rela-
tional database and the creation of the RecordChange records.

Test suite Test case
test mongo test fields added empty db

test data change
test duplicate in batch
test extra fields

test record change test basic usage
test data types
test changed since basic
test changed since relevant relations basic
test changed since relevant relations advanced

test store data test basic
test idempotency

Table 6.16. The test suite for newly implemented functionality

25

Chapter 7
Integrating the PATSTAT data source

Patents represent one of the most valuable types of a result of applied research. There
are several organizations all over the world, notably WIPO , EPO and USPTO are
overseeing the process of application and validation of patents. The process is somewhat
standardized across the main continents; however there is no such thing as a worldwide
patent or a central entity providing the data on patents.

7.1 Analysis
The RVVI API interface provides data on patents that were sponsored by funds from
the Czech Republic, thus, they were already part of the results collection. This set
of patents will be expanded by patents that were developed by Czech scientists or the
ones that are active in the Czech Republic.

7.1.1 Business requirements
The main point of interest are patent publications and applications from 2007 onward,
with the designated or contracting state being the Czech Republic. For better decision
making, these attributes of publication are the most relevant:

. Publication code. Title. Classification. Citations. Application date. Publication date. Validity of patent. Designated contracting state. Applicant / proprietor. Applicant / proprietor (country). Inventors. Inventor (country)

Common attributes should be discovered among the current entities present in the
warehouse.

26

. 7.1 Analysis

7.1.2 Data sources
Potential sources of data on patents are “Open Data” service from Czech Industrial
O�ce 1 and services provided by the European Patent O�ce. European Patent O�ce
provides several methods of retrieving patents data in bulk suitable for our use case:

Product name Price Format
Open Patent Services free REST, JSON
DOCDB Bulk data set 9100 Ä XML
PATSTAT 975 Ä/year SQL
PATSTAT online 975 Ä/year CSV

Table 7.1. Data formats and price comparison

The biggest challenge was to choose the right data source for the task with minimum
costs. It was also possible to utilize more than one source. The open data service of the
Czech Industrial O�ce was not su�cient, because it does not explicitly declare whether
the patent is valid nor does not provide information on patents applied through other
patent o�ces. It does, on the other hand, provide weekly incremental updates of data.
This could be very beneficial for the process of incremental updates of data. Looking
at the price of the services o�ered by , Open Patent Services looks like a promising
solution. The fact that it is the only an entirely free solution provided combined with
the standard HTTP interface to query the data and the ability to transform it in
any desirable way resulted in choosing OPS as the primary source of data. It would
be easier to use the SQL database provided by EPO and maintain it apart from the
central relational database used in the warehouse, but the final solution provides us
with many benefits, not limited to:

. the ability to have access to most up to date data provided by OPS,. the ability to transform and clean the raw data into desirable structures,. the ability to combine data already present in the warehouse with the newly inte-
grated data set easily, notably RIV results and business subjects.

Even though the final solution leveraging the use of HTTP interface over the use
of static SQL tables is more complicated and time consuming, it o�ers many benefits
that will be crucial in the long run. Unfortunately, OPS does not provide a reliable
way to explicitly select a particular subset of patents, only the patents with contracting
or designated state being the Czech Republic. Despite this, it is possible to query
individual patents based on their codes. The new challenge was: how to get only codes
for patents supporting our use case.

To be able to obtain only the codes of patents in an acceptable format and manner,
one manual step was needed in the data pipeline. It is possible to obtain a free sub-
scription for PATSTAT online database for three months. The final subset of patents
available for querying is limited to only the ones that were published through EPO, but
this fact does not restrict us in any way. The only restricting outcome of this approach
is not being able to automate the process of producing a report containing said patents
because the interface of PATSTAT online is specifically designed to allow only human
interaction using a limited subset of SQL directives.

1 https://isdv.upv.cz/webapp/webapp.opendata.tm

27

https://isdv.upv.cz/webapp/webapp.opendata.tm

7. Integrating the PATSTAT data source .
7.2 Implementation

7.2.1 Domain model
The patent data set is covered by the content of the business needs described in Chapter
7.1.1. The resulting domain model is shown in Figure 7.2.

Figure 7.2. Patent data set domain model

28

. 7.2 Implementation

7.2.2 Data pipeline
The Open Data Service from EPO was chosen as a primary source of up-to-date data.
Unfortunately, the API interface does not support complex querying of the data, which
makes the task of finding only a subset of patents that are valid in the Czech Republic
unachievable using only this interface. In order to obtain codes of publications adhering
to the requirement, other sources of data are needed.

The PATSTAT data set represents a relational database accessible from the web
interface or through buying the data set on a hard disk containing SQL scripts that can
build the database. These services provide a more significant scope of the data than is
needed and cost more than an acceptable price for such an overblown solution.

A semi-automatic solution was chosen for the patents’ data pipeline. Only one man-
ual step is required for the process of downloading the patents data set in order for the
whole solution to be free of charge. PATSTAT online interface provides a way to create
a free account that is valid for three months. This allows us to create SQL reports that
can only contain patents that were processed by the EPO. The step of exporting a re-
port of patent applications with fees paid for the Czech Republic will only happen once
every 4 months since data on new patents get added at the same rate to the PATSTAT.

The final flow of data in the pipeline is shown in Figure 7.3. The data flow stages
are very similar to the ones discussed in Chapter 6 in order to keep a unified approach
for ETL processes across the whole warehouse.

29

7. Integrating the PATSTAT data source .

Figure 7.3. Patents data pipeline

7.2.3 Extract
In order to provide a unified approach to the extract stage of the ETL process, the data
staging area was used in the same way as in Chapter 6. Data has to be loaded into
MongoDB first before it was be transformed and loaded into the operational database.
The schema of the documents stored in the staging area is identical to Figure 6.5 to
provide functionality for finding recently changed entities.

OPS provides many endpoints for querying information on specific subjects: classifi-
cation, events, etc. Multiple endpoints were utilized for finding complete information on
patents. Each set of records was assigned an individual MongoDB collection for a bet-

30

. 7.2 Implementation

ter decomposition of the loading phase. Each collection shared one common attribute:
code of the patent in epodoc format to allow further aggregation.

Unfortunately, the OPS limits the number of concurrent requests to the service, so
parallelization of the extraction phase was out of the question.

31

7. Integrating the PATSTAT data source .
7.2.4 Transform

The structure of data provided by source systems is not under the control of a developer,
thus, establishing a common interface for this stage of the pipeline is not simple, if not
impossible.

There were attempts to do so historically. A hierarchy of importing classes was devel-
oped for pipelines that use ISVAV as a source system. These classes were distinguished
by formats of the data (JSON, XML), types of source and destination storage (database
tables, files), and the types of entities they are handling. This hierarchy poses a typ-
ical problem of taking a highly object-oriented approach of writing code: we want a
banana but must build the jungle and gorillas first. This approach takes a heavy toll
on the ability to unit test these classes. Mocking and stubbing unrelated functionality
takes a lot of time and is hard to maintain, which results in most of the importing
classes not being tested by unit tests. These drawbacks were taken into account when
implementing the transforming interface for the patent data set.

Since the schema of source documents provided by OPS is well defined and shared
across di�erent patent o�ces in Europe (and di�erent services serving the data by
OPS itself), we can supply a set of classes that transform standard python dictionaries
without the need to di�erentiate between di�erent types of source storage.

This was achieved by defining a set of DTO classes,defined in Figrue 7.5 handling
only the transformation of data. To ease the problem of developing these classes, a new
way of defining classes added in Python 3.7 was used: @dataclass[17]. This allows
for easier development of DTO classes by removing the need to define __init__ and
__repr__ methods as they are generated automatically (thus, creating code which is
easier to read). A simple example of dataclass used for defining DTO is described in
Code snippet 7.4:

@dataclass
class PatentDto(AbstractDto):

title_cs: str = None
title_en: str = None
abstract_cs: str = None
abstract_en: str = None

codes: PatentCodesDto = field(
init=False)

inventors: List[InventorDto] = field(
default_factory=list)

applicants: List[InventorDto] = field(
default_factory=list)

citations: List[CitationDto] = field(
default_factory=list)

classification: List[ClassificationDto] = field(
default_factory=list)

@staticmethod
def parse(data: dict) -> PatentDto:

...

def save(self) -> Patent:
....

Code snippet 7.4. Example of dataclass

32

. 7.2 Implementation

Unfortunately, the dataclass interface limits the use of @property descriptors, there-
fore, in order to provide a standard methods of defining getters and setters, classic
classes were used.

This approach allows us to easily unit-test business logic as opposed to previous
interface, where classes had to be instantiated with all of their dependencies met.This
requires a lot of mocking and extra e�ort to test simple logic.

Figure 7.5. The class diagram of the extraction interface

7.2.5 Load
The loading stage of the pipeline is identical to the interface used in Chapter 6 in order
to guarantee the creation of RecordChange records later used in monitoring the progress
of pipelines and providing a way to find changed records that have to be indexed in
Solr.

The loading phase consisted of two parts: loading of records into the relational
database and later loading them into Solr. In order to speed up the process, loading
was run in parallel with the ability to regulate the number of workers handling the
loading phase. Even though Airflow provides a way to create tasks dynamically in a
DAG, this functionality was insu�cient. The execution plan of DAG has to be known at
compile-time, i.e., the time when the DAG code gets parsed by the Airflow scheduler.
This limits the parallelization because there is no way to determine the number of
new documents to be loaded as this variable will be known later in the process when
records have been extracted from source systems. In order to allow the parallelization
of loading tasks, there is a need to have information on the total number of jobs running
and current iteration. Then it is possible to query MongoDB limiting the number of
retrieved records and skipping through them by batch size.

7.2.6 Automation
Significant focus was placed on unifying the individual stages of the ETL process across
all pipelines, but some trade-o�s had to be made. The automation of the patent data
set ETL processes was achieved through defining a set of Airflow operators handling
communication across the source and destination services. In order to provide a unified
approach for ETL, considerable focus was placed on using the Airflow interface as much

33

7. Integrating the PATSTAT data source .
as possible. This means, namely moving logic out of Django commands into Airflow
operators and storing ETL metadata in the database instead of on disk to allow easy
integration with Airflow. The following section will give more details on how di�erent
parts of Airflow framework were put to use:

Operators

A set of Airflow Operators, pictured in Figure 7.6, was created. These operators are
where the logic is stored. They are meant to be reusable pieces of code but some serving
a very specific use case

. EPOSimpleHttpOperator - ensures that an access token needed for requests to OPS
is present and up to date, if not it will be refreshed and populated to the headers of
the request and saved to Airflow variable to allow its reuse by other operators.. EPOToMongoOperator - ensures that records downloaded from OPS to staging area
conform to the schema defined in Figure 6.5.. MultipleEPOToMongoOperator - allows to query OPS enpooint for multiple entity
codes one by one. MongoToPostgresOpertor - operator for saving Mongo documents to destination ta-
bles in relational database using OpsDTO sub-classes.. DictToMongo - base operator for storing Python dictionaries in MongoDB while
adhering to schema defined in Figure 6.5.. MongoPatentToPostgresOperator - specific operator for storing patents from Mon-
goDB in relational database with additional information located in various MongoDB
collections.

These operators are meant to be used across all DAGs that download data from OPS.

Figure 7.6. A class diagram of extraction interface

34

. 7.2 Implementation

Connections

The connections to external systems were defined using the Airflow connection interface.
Connections provide a common interface for defining details of the connection and
their reuse in DAGs. The details about the connections are accessible from the web
admin interface and through code interface. In the case of standard HttpOperators,
the developer is only required to specify the name of the connection, and the operator
will handle all logic of getting the data about the connection by itself.

To globally change the details of the connection, the admin interface pictured in
Figure 7.7 can be usedthus, enabling anyone with the right permission to alter the
details of connections without the need to change code.

Figure 7.7. An admin interface of connections in Airflow

Variables

The Airflow variables serve as an interface to the centralized storage of data. Variables
are accessible to the processes through the DAO layer shown in Figure 7.8. Any data
that can be pickled using a python pickle module can be stored in the variable.

Variable.set(value="foo", key="bar")
Variable.get(key="bar")

Code snippet 7.8. Variable DAO interface

These variables were used to store secrets and credentials needed for authorizing
requests to OPS. The data stored in the variables, are encrypted and if the key of
variable contains keywords such as password or secret, it won’t be available to view
through the admin interface. This provides some sort of security as only people that
have access to the encryption key can get hold of the stored value. Encryption is handled
entirely by the Airflow framework and is therefore transparent to the developer.

35

7. Integrating the PATSTAT data source .
7.3 Testing

Testing pipelines in data applications is very challenging, and results have low value
because of the inability to simulate conditions in the production environment. There-
fore, integration tests served as “sane checks” and are not meant to cover all possible
scenarios since format of the source data can change over time.

7.3.1 Unit tests

The ETL interface for patent data set was specifically designed to allow easier testing
through the means of decoupling the transforming and loading stage of the process
using the DTO layer. The unit-tests, therefore, tested only the parsing and saving logic
of the DTO layer.

Parametrized tests were established for the purpose of testing data cleansing.
Parametrized tests allow for testing multiple cases in one test run and clearer definition
of inputs and outputs.

country_in_out = [
(" [CZ] ", "CZ"),
(" [CZ]", "CZ"),
("[CZ] ", "CZ"),
("[CZ]", "CZ"),
("* [CZ]* ", "CZ"),
("[CZ]* ", "CZ"),
("- [CZ] -", "CZ")

]

@pytest.mark.parametrize("raw, output", country_in_out)
def test_country_dto_code_setter(raw, output):

country = CountryDto()
country.code = raw

assert country.code == output

Code snippet 7.9. Parametrized test example

7.3.1 Integration tests

The integration tests were mainly developed to test custom operators and perform
smoke tests on the DAGs. The testing environment introduced in Chapter 6.3 was
reused and another fixture was provided for the initialization of Airflow metadata DB.

36

. 7.3 Testing

Airflow metadata database

For initiation of Airflow metadata database, a di�erent database engine, sqlite, was
used than the one used in the production . Sqlite is a database stored entirely on
disk using a file. It provided an easy way to create and destroy the test databases to
guarantee a fresh state of the database for each test session. This is somehow contrary
to the points discussed in Chapter 6.3. However, it is an acceptable approach because
the only limitation it brings is the inability to run processes in parallel.

To only initialize the airflow database for the tests requiring it, pytest fixtures were
used. Instead of blindly initializing it for all tests in pytest sessionstart, a fixture,
described in Code snippet 7.10 with session scope was created. The session scope of
the fixture ensures that the fixture will only be created once per test session (if used in
tests) and cached for use in all tests. After the session has finished, the database will
be destroyed along with all of the other dependencies. This was achieved by yielding
the fixture, code after yield statement will be executed, when fixture goes out of the
scope.

@pytest.fixture(scope=’session’)
def airflow_test_db():

_setup_airflow()
yield
_kill_airflow()

Code snippet 7.10. Initialization/destruction of airflow metadata DB

7.3.3 Test suite

The complete test suite, shown in Table 7.11, was composed of integration and unit
tests for the implemented functionality.

Integration tests defined in the test airflow operators suite were testing logic asso-
ciated with generation of authentication tokens on every request to OPS, retrieval of
data from mocked sources and later saving them in destination databases.

The tests in test dto suite were testing logic responsible for parsing of raw JSON
data and asserting that saved objects correspond to the parsed data.

37

7. Integrating the PATSTAT data source .
Test suite Test case
test dto test country dto code setter

test country save
test inventor save multiple
test citation parse
test citation save
test non citation parse
test non patent citation save
test classification parse
test classification persist
test patent parse
test patent save
test event parse
test event save

test airflow operators test EPOSimpleHttpOperator success no previous token
test EPOSimpleHttpOperator success previous empty
test EPOSimpleHttpOperator success previous not valid
test EPOSimpleHttpOperator success previous not changed
test EPOSimpleHttpOperator fail
test get EPOHttpOperator single entity
test get EPOHttpOperator post multiple entities
test EPOToMongoOperator no response key nor id field
test EPOToMongoOperator response key and id field
test get MongoToPostgres aggregate success
test get MongoToPostgres aggregate additional data success
test MultipleEPOToMongo operator

Table 7.11. Test suite related to PATSTAT integration

38

Chapter 8
Conclusion

The key objectives of this thesis were:

. perform an analysis of available orchestration solutions,. automate current ETL scripts,. integrate a new data set into a data warehouse using the chosen solution, providing
a way to monitor the whole process.

After performing an analysis of the available industry-standard solutions for orches-
trating of scripts in Python, described in Chapter 5, and defining principal requirements
for the final ETL framework in Chapter 4, the Apache Airflow was chosen as the best
fit for the job of automating ETL processes in a DAFOS data warehouse. Simple
automation of scripts was not enough, and the problem as a whole produced many
sub-problems discussed in Chapters 6.2 and 7. MongoDB was utilized to provide a
more robust solution for the data staging area and to allow querying and an analysis
of staged data. All of the implemented functionality was tested using unit tests and
integration tests; a basic testing strategy had to be established to allow that. Testing
is described in greater detail in Chapters 6.3 and 7.3.

All of the requirements were satisfied with one exception: refactoring of the data
model. It was decided that this task is out of the primary scope of this thesis because it
does not explicitly relate to ETL in general; it just provides a cleaner way to structure
the data in the database. The main idea behind this requirement is to allow further
decoupling of the apps present in the project. Common entities that are imported
from di�erent sources would be saved in separate tables and later joined into one table
containing foreign keys to the records of each separated tables.

Data from source systems is integrated periodically without the need for manual
scheduling. Even though the dependencies between tasks and processes are still present,
all of the individual tasks are idempotent. The resulting solution provides a developer
with ETLs that are self-describing, i.e., their dependencies and state are accessible from
the web interface. The developer team is not only capable of tracking the state of DAGs
but also changes happening in data in real-time. It is possible to query logs of tasks
and share insights using URLs to the web interface instead of sharing files containing
this information.

8.1 Further refinements
The patent data set accessible from OPS provides data that is not thoroughly sani-
tized (errors occur during the conversion of character encoding, many unwanted and
unpredictable characters are present in data). Therefore, a great deal of e�ort needs
to be put into data cleansing. Collective entities have to be found and later connected
on the database level, in order to provide the end-user with a better product covering
information on across the whole data warehouse. Even though all key implementation
points were covered by the tests, some of them expect data schema that is in control of

39

8. Conclusion .
data providers; if the schema of data in the source systems changes, these changes will
not be handled by tests. It would be beneficial to assert data expectations in tests to
allow better maintainability of the project.

The old ETLs managing the IS VaVaI integration are still present in the project.
However, it is necessary to rewrite them into the related Airflow abstractions, and
further divide them into smaller units to have a unified and idempotent ETL approach
and leverage Airflow’s use across the whole warehouse.

As a developer is no longer in charge of the execution of ETLs, some ill-structured
or corrupt data can get integrated into the data warehouse. A solution providing a way
to version changes in the relational database would be beneficial to the maintainability
of the final solution. The standard approach to this problem [20] could be utilized.

40

Chapter 9
List of abbreviations used in the document

AWS . Amazon Web Services
DWH . Data warehouse
GCP . Google Cloud Platform
ODM . Object document mapping
PATSTAT . EPO Worldwide Patent Statistical Database
R&D . Research and development
TA CR . Technology agency of the Czech Republic
USPTO . U.S Patent and Trademark O�ce
WIPO . World Intelectual Property Organization

41

References

[1] VAISMAN, Alejandro and Esteban ZIMÁNYI. Data Warehouse Systems [online].
1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014 [cit. 2020-05-12]. DOI:
10.1007/978-3-642-54655-6. ISBN 978-3-642-54654-9. Available at https://www.
springer.com/gp/book/9783642546549.

[2] IMHOFF, Claudia, Nicholas GALEMMO and Jonathan G. GEIGER. Mastering
Data Warehouse Design: Relational and Dimensional Techniques. 1. Indianapolis,
Indiana: Wiley Publishing, 2003. ISBN 0-471-32421-3.

[3] POUR, Jan, Miloö MARYäKA and Ota NOVOTN›. Business intelligence v pod-
nikové praxi. Praha: Professional Publishing, 2012. ISBN 978-80-7431-065-2.

[4] KIMBALL, Ralph and Joe CASERTA. The Data Warehouse ETL Toolkit: Prac-
tical Techniques for Extracting, Cleaning, Conforming, and Delivering Data. 1.
Indianapolis: Wiley Publishing, 2004. ISBN 0-764-57923-1.

[5] KIMBALL, Ralph and Margy ROSS. The data warehouse toolkit: the definitive
guide to dimensional modeling. 3rd ed. Indianapolis: Wiley, c2013. ISBN 978-1-
118-53080-1.

[6] Evaluation report of Proeval project. Available at: https://www.tacr.cz/o-
nas/interni-projekty-ta-cr/projekt-proeval/

[7] ARIYACHANDRA, Thilini and Hugh J WATSON. Which data warehouse archi-
tecture is most successful? Business intelligence journal. The Data Warehouse
Institute, 2006, 11(1), 4.

[8] Luigi documentation. Available at: https://luigi.readthedocs.io/en/stable.
[9] Apache Airflow documentation. Available at: https://airflow.apache.org/

docs/stable.
[10] Dagster documentation. Available at: https://docs.dagster.io/.
[11] Publicly available data from IS VaVaI. Available at: https://www.rvvi.cz.
[12] Documentation on parallelized Mongo bulk operations. Available at: https://

docs.mongodb.com/manual/reference/method/db.collection.initializeUnorderedBulkOp/

[13] Mongoengine - object document mapping library. Available at: http://
mongoengine.org/

[14] Why ORM shouldn’t be your best bet. Available at: https://medium.com/
ameykpatil/why-orm-shouldnt-be-your-best-bet-fffb66314b1b

[15] Django contenttypes framework. Available at: https://docs.djangoproject.
com/en/3.0/ref/contrib/contenttypes/

[16] System-specific parameters and functions. Available at: https://docs.python.
org/3/library/sys.html

[17] Data Class Python enhancement proposal. Available at: https://www.python.
org/dev/peps/pep-0557/.

42

https://www.springer.com/gp/book/9783642546549
https://www.springer.com/gp/book/9783642546549
https://www.tacr.cz/o-nas/interni-projekty-ta-cr/projekt-proeval/
https://www.tacr.cz/o-nas/interni-projekty-ta-cr/projekt-proeval/
https://luigi.readthedocs.io/en/stable
https://airflow.apache.org/docs/stable
https://airflow.apache.org/docs/stable
https://docs.dagster.io/
https://www.rvvi.cz
https://docs.mongodb.com/manual/reference/method/db.collection.initializeUnorderedBulkOp/
https://docs.mongodb.com/manual/reference/method/db.collection.initializeUnorderedBulkOp/
https://docs.mongodb.com/manual/reference/method/db.collection.initializeUnorderedBulkOp/
http://mongoengine.org/
http://mongoengine.org/
https://medium.com/ameykpatil/why-orm-shouldnt-be-your-best-bet-fffb66314b1b
https://medium.com/ameykpatil/why-orm-shouldnt-be-your-best-bet-fffb66314b1b
https://docs.djangoproject.com/en/3.0/ref/contrib/contenttypes/
https://docs.djangoproject.com/en/3.0/ref/contrib/contenttypes/
https://docs.python.org/3/library/sys.html
https://docs.python.org/3/library/sys.html
https://www.python.org/dev/peps/pep-0557/
https://www.python.org/dev/peps/pep-0557/

. .
[18] ROSSEL, Sander. Continuous Integration, Delivery, and Deployment. 1. Birm-

ingham: Packt Publishing, 2017. ISBN 978-1-78728-661-0.
[19] Publicly available data on business entities from Ministry of Finance of the Czech

Republic https://wwwinfo.mfcr.cz/ares/ares_es.html.cz

[20] PostgreSQL: Continuous Archiving And Point-In-Time Recovery. Available at:
https://www.postgresql.org/docs/12/continuous-archiving.html

43

https://wwwinfo.mfcr.cz/ares/ares_es.html.cz
https://www.postgresql.org/docs/12/continuous-archiving.html

Appendix A
Contents of enclosed CD

The CD enclosed with this thesis contain digital copy of this document and all sources
needed to compile it in the thesis folder.

The src folder contains minimal set of modules and packages needed to test the
implemented functionality. It was needed to include many parts of the DAFOS project
not covered by this thesis in order to run implemented functionality, notes on the self-
written code are present in the README file

src/ # code sources
- README.md # notes on installation procedure and package contents

thesis/ # sources of the tex document
- main.tex
- main.pdf # this document

45

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Introduction
	Structure of the document

	Data warehousing
	ETL processes

	Technology Agency of the Czech Republic
	DAFOS data warehouse
	Domain
	Architecture

	Software requirements specification
	Surrounding the requirements
	Business needs
	Data integration requirements
	Software requirements

	An analysis of available workflow orchestration solutions
	Scope and purpose
	Luigi

	Apache Airflow
	Dagster
	Final Conclusion

	The automation of the current ETL processes
	Analysis
	As-is state
	To-be state

	Implementation
	Data staging area
	Data governance
	Common loading interface
	Automation
	Summary

	Testing
	Integration tests
	Test suite

	Integrating the PATSTAT data source
	Analysis
	Business requirements
	Data sources

	Implementation
	Domain model
	Data pipeline
	Extract
	Transform
	Load
	Automation

	Testing
	Unit tests
	Test suite

	Conclusion
	Further refinements

	List of abbreviations used in the document
	References
	Contents of enclosed CD

